If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-4Y^2+150Y
We move all terms to the left:
-(-4Y^2+150Y)=0
We get rid of parentheses
4Y^2-150Y=0
a = 4; b = -150; c = 0;
Δ = b2-4ac
Δ = -1502-4·4·0
Δ = 22500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22500}=150$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-150}{2*4}=\frac{0}{8} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+150}{2*4}=\frac{300}{8} =37+1/2 $
| R(x)=-(1)/(9)(200)^(2)+100(200) | | -4-5=3x+37 | | 4•(2+5y)=44-3•(1-3y) | | -2m=26 | | 12+8=p | | 2(100-y)+4y=306 | | 40+5x=30+10x | | 2y+2C=5.90 | | 6y-3(3y+10)=2y | | 10(-x)=0.0347 | | 8+v=18-v | | (n×10)÷5=24 | | 2(3x-4)=43 | | 4(x+1)=5(x+1) | | f(6)=-4+6|2(6)-6| | | 8g+9=30 | | 4s2+9=125 | | 8d+9=13 | | 81-4x2=0 | | a2-14a+33=0 | | a2-14a+32=0 | | 0.50x-0.20(50+x)=8 | | 6x+5x=3x+2x-51 | | x/7+4=22 | | (2t-3)2=2t2+5t-26 | | 7-h=12-7 | | 14-2=y-3+5y | | x-20x=180 | | 6n+4=54 | | X^3+2x^2-3x+3=0 | | 4x+3Y=37.5 | | 4x+3x=37.5 |